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Abstract

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and
transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived
from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no
discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral
lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyri-
dinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to
disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clini-
cal evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly sup-
ports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test
this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then
in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of
outcome to determine efficacy. This is an under-researched area of major clinical need.
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The Viral Lipid Envelope

In common with many viruses, such as influenza and herpes
simplex, coronaviruses are surrounded by a fatty layer, called a

“lipid envelope,” into which the spike glycoproteins required for
infection are inserted (Figure 1). Viral envelopes are acquired at
host cell membranes—some at the plasma membrane, others at
internal cell membranes such as the nuclear membrane,
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endoplasmic reticulum, and Golgi complex.3,4 During this, viral
proteins are incorporated at the expense of host cell proteins,
creating the shed viral particle.5 Thus, for most viruses, the en-
velope lipids are considered to be the same as the host mem-
branes (phospholipids, sphingolipids, and some cholesterol).
Lipid composition is not the same across subcellular mem-
branes with mammalian plasma membranes having higher
cholesterol and sphingolipid content.6–12 While the lipid
makeup of the envelope of SARS-CoV-2 has not been character-
ized yet, coronaviruses are known to bud from the endoplasmic
reticulum Golgi intermediate compartment (ERGIC), before be-
ing transported by exocytosis in cargo vesicles.13,14 This indi-
cates their composition will be related to endoplasmic
reticulum membrane, which contains more phosphatidylcho-
line, but less cholesterol and sphingolipids than the plasma
membrane.6–12 A recent report demonstrated that coronavirus

(HCoV-229E) regulates host lipid metabolism in response to in-
fection, in common with many other viruses.15–17 However, no
information on the virus lipid envelope composition was pro-
vided, and its specific composition has not been determined
experimentally.

The Soap/Alcohol Virucidal Public Health
Advice Relating to Surface Neutralization

It is widely known that interfering with the lipid envelope repre-
sents a virucidal strategy to target many coronaviruses, with a
large body of work evidencing the impact of many agents.18,19

For a summary, refer to Kampf et al., a systematic review pro-
viding tables showing data from different original publications
for inactivation of coronaviruses by biocidal agents in suspen-
sion tests.19 During the 2003 SARS-CoV outbreak, viral material

Figure 1. Cartoon Representation of the SARS-CoV-2 Glycoprotein, Embedded in the Viral Envelope, along with Membrane Disrupting Agents. Ribbon diagram was

obtained from Wrapp et al.,1 chemical structures were from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and Nieto-Garai et al.2
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was detected on hospital surfaces, leading to the idea that sur-
face decontamination would be an important approach. At that
time, various compounds were considered, including ethanol at
high concentrations of 60%–70% (v/v), since these doses had
been found to be highly effective against several viral patho-
gens, including coronaviruses.19–21 Recent studies on SARS-
CoV-2 also support this, with high concentrations being highly
effective as shown in a recent preprint.22 The historical reason
for only testing high concentrations in microbicidal research
has been that these give broad-spectrum activity toward bacte-
ria, viruses, and fungi, and thus for use on inanimate surfaces/
fomites where the target microbes are unknown would be al-
ways preferred. The consensus view is that enveloped viruses,
such as herpesviruses, orthomyxoviruses, paramyxoviruses,
and coronaviruses are highly sensitive to 60%–70% (v/v) ethanol
with almost immediate inactivation, while nonenveloped vi-
ruses are less or not susceptible.19–22

We are now widely encouraged to use soap or 60%–70%
alcohol-based gels to inactivate SARS-CoV-2, based on the view
that these agents damage the lipid envelope, including in recent
World Health Organisation (WHO) and Environmental
Protection Agency recommendations (https://apps.who.int/
iris/bitstream/handle/10665/331138/WHO-WPE-GIH-2020.1-
eng.pdf; https://www.epa.gov/pesticide-registration/list-n-disin
fectants-use-against-sars-cov-2; https://www.who.int/gpsc/
tools/GPSC-HandRub-Wash.pdf) . At the same time, there has
been no discussion of oral antiviral strategies, apart from a re-
cent response to an article in the British Medical Journal calling
for protection for healthcare workers against infection (https://
www.bmj.com/content/369/bmj.m1324/rr-5). Properly designed
clinical trials that address this issue are currently lacking in the
literature. Current WHO interim guidance on clinical manage-
ment of SARS-CoV-2 in the home is focused on the use of per-
sonal protection, including face masks, along with hand,
clothing, and surface sanitation, to reduce risk of airborne and
direct spread of the virus, but does not mention oral hygiene
(https://apps.who.int/iris/handle/10665/331133). Thus, its utility
in the setting of SARS-CoV-2 has not been considered systemat-
ically, and there is a lack of either positive or negative robust
clinical evidence.

Mouthwashes vary widely in composition; however, some
commercially available formulations contain ethanol at 14%–
27% (w/v) in the United Kingdom, Europe, and the United States.
Prompted by this, we reviewed the available scientific literature
to establish whether oral treatment using ethanol-based or
other types of mouthwashes could present a strategy to either
dampen or reduce viral load, to potentially restrict virus trans-
mission in the current pandemic situation, particularly for vul-
nerable individuals or healthcare workers. We found that there
is a paucity of data systematically testing the impact of lower
(less toxic) ethanol concentrations on enveloped virus inactiva-
tion, with most simply reiterating the use of the higher concen-
trations described above.18,20,21,23–26 We also found a paucity of
robust clinical studies in this area that address in a randomized
double-blind manner the impact of oral rinsing on objective
measures, specifically neutralization of enveloped viruses, in-
cluding coronaviruses.

Viral Load, Saliva/Throat Virus, and Disease
Severity in SARS-CoV-2

It is becoming increasingly recognized that the throat is a major
site of replication and shedding of virus in COVID-19 illness,

and that viral load is important.27 Throat and sputum are abun-
dant in particles, which peak 5–6 days after symptom onset,
and decline thereafter.28,29 Viral load correlates with older age,29

and a study of 76 patients in Nanchang, China, showed that
those with severe SARS-CoV-2 tend to have higher viral load
and longer virus-shedding period than those with mild dis-
ease.30 Similarly, viral load was linked with lung disease sever-
ity in a study of 12 patients with pneumonia.31 Many
asymptomatic individuals have modest levels of detectable viral
RNA in their oropharynx for at least 5 days, which is similar to
individuals with clinical symptoms.32 Data from GTEX gene ex-
pression data indicate that angiotensin converting enzyme
(ACE2) (a key receptor for COVID-19) expression is higher in sali-
vary glands than lungs, suggesting that these could be a major
source of new viral particles.33 A recent study using mobility
data and Bayesian inference inferred that a high rate of undocu-
mented infections is responsible for rapid spread of SARS-CoV-
2.34 Taken together, these data suggest that the potential for
transmission is high early in the disease. While further studies
are needed to better understand the relationship between viral
load and symptom severity, it is expected that higher levels of
viral shedding in the throat or lungs might be associated with
an increased ability to infect others. To date, the relationship
between lung and throat viral load in terms of disease severity,
is not clear, and how dampening throat virus load may impact
on resulting lung disease or viral transmission is not known.

The route of SARS-CoV-2 infection is currently considered to
be via respiratory droplets, similar to SARS-CoV,35 and the virus
particle is viable in aerosols for up to 3 h.36 Although we do not
yet know the minimal infectious dose, the high rate of trans-
mission indicates this is likely to be relatively low. If correct,
then strategies to reduce the number of infective virus particles
in mucous membranes through promoting their removal or in-
activation could contribute to reducing risk of transmission.
Thus, assuming that the throat is a major site of replication in
early stages (even before symptoms are apparent), the oral
washing using agents that could damage or destroy the lipid en-
velope has the potential to reduce viral load in the oropharynx.

At this time, there is incomplete information on how SARS-
CoV-2 moves from the throat and nose to the lungs, and this
could include (1) viral shedding, (2) the aspiration of necrotic
cell debris, or (3) direct infection of neighboring cells. Assuming
viral shedding is involved, the oral rinses that target the viral
lipid envelope represent a potential method to remove/rinse or
inactivate infective particles generated in the throat. The spe-
cific intracellular replication cycle for SARS-CoV-2 in humans is
not yet known. Based on nonsynchronized replication cycles
that take <24 h, virus is likely to be secreted almost con-
stantly.37,38 Oral agents will impact only on virus that is extra-
cellular or actively budding. Therefore, the persistence of
treatment will be important. How long mouthwash components
retain an ability to interact with biomembranes in the mouth is
unclear, and more research is required.

The Impact of Lower Ethanol Concentration on
Biomembranes

When considering lower (nontoxic, more economical) ethanol
concentrations, the literature on mammalian cells (from where
the lipid envelope originates) provides a close comparator. We
also reviewed studies on model membrane vesicles comprising
phospholipids such as phosphatidylcholine; however, as these
are protein-free, the impact of nonlipid components on ethanol
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toxicity is not accounted for. Bacterial pathogens contain very
different membranes in lipid and protein composition, includ-
ing lipopolysaccharides and peptidoglycans, so they are not
considered here. Below we summarize the literature on impact
of ethanol on cell/model membranes (Table 1).

Low Concentrations of Ethanol Cause Swelling,
Interdigitation, and Leakage in Model Membranes

Biophysical studies in the 1980s and 1990s compared various
alcohols (ethanol, methanol, butanol, and propanol) for their
ability to perturb model phospholipid membranes. Many were
optimizing generation of lipid vesicles for drug delivery; how-
ever, the toxicity of most short-chain alcohols prohibits oral
use. Here, we reviewed reports on the properties of ethanol on
model membranes. Few studies directly investigated lysis, in-
stead focusing on membrane fluidity, permeability, interdigita-
tion, thickness, and other parameters. In one study, ethanol
>3.4 M (20% v/v) resulted in membranes not being considered
“stable”.39 Ethanol addition causes rapid swelling of phosphati-
dylcholine vesicles from around 30 nm diameter at 0 M, up to
between 80 and 110 nm diameter, at 1.1–1.5 M (6.5%–8.8% v/v).55

Interdigitation refers to the process whereby the presence of
short-chain alcohols enables the methyl group of the fatty acyl
chains to move beyond the midplane of the bilayer, penetrating
the opposite monolayer, and appears to be an event that pre-
cedes and promotes vesicle fusion and leakage.56,57 Several
studies demonstrate that ethanol promotes interdigitation.58 In
one, ethanol at above 2 M (11.8% v/v) led to formation of interdig-
itated phospholipid sheets from small unilamellar vesicles
(SUVs), which then annealed to form larger interdigitation-
fusion vesicles (IFVs).40 This means that ethanol at this concen-
tration can deform small phospholipid vesicles leading to fu-
sion and formation of larger structures. During this process,
leakage of contents from vesicles is seen.40,42,55,59 Three studies
compared membranes consisting of either phosphatidylcholine
alone, phosphatidylcholine/phosphatidylethanolamine mix-
tures, or phosphatidylcholine/cholesterol mixtures, and showed
that all became permeable at ethanol concentrations around
0.6–2.1 M (3.5%–12.3%, v/v).43,44,55 Elsewhere, ethanol at rather
lower concentrations of 86 mM (0.5% v/v) caused lysis of phos-
phatidylcholine vesicles during repeated cycling through phase
transition temperatures.41 Partitioning of ethanol into the mem-
brane can be altered through the presence of additional biologi-
cally relevant lipid species such as cholesterol or
gangliosides.43,60,61 This indicates that complex biological mem-
branes may respond very differently, and not only the presence
of other lipid types, but also the impact of proteins need to be
taken into account. Nonetheless, it is clear that model mem-
branes are sensitive to ethanol at concentrations far lower than
the 60%–70% currently recommended for inactivation of virus
on hard surfaces, and at amounts contained in widely available
mouthwashes (Section 6).

Impact of Ethanol on Mammalian Cell Membranes

We also reviewed the impact of ethanol on mammalian cells
in vitro. Of direct relevance to coronaviruses, a study on corneal
epithelial cells showed that a 30-s incubation with 20% ethanol
led to around 40% loss of viability, which increased to 70% loss
at 40% ethanol. There was significant leakage of intracellular
contents following 20% ethanol for 30 s.48 This short incubation

also altered inflammatory responses, differentiation, and epi-
thelial marker expression.48 Several studies on the impact of
ethanol on red blood cells were also found. Sonmez et al.
showed that around 1 M (5.9% v/v) causes �10% cell lysis, but
higher amounts were not tested.49 A variety of effects on red
cells have been shown including potassium leakage and hemo-
lysis, at moderate concentrations around 3–4 M (18%–23.5% v/v).
However, incubation times of 15 min or greater were generally
used.50–52 Last, a study on an intestinal cell line (Caco-2) showed
that ethanol >5%–10% causes loss of viability, leakage of con-
tents, and disruption of tight junctions, with a long incubation
time of 60 min.53 Since the membrane composition of coronavi-
ruses is expected to match ERGIC (Section 1), these studies pro-
vide strong evidence that low ethanol will directly impact on
the SARS-CoV-2 membrane also.

So far, we found only studies that tested the impact of re-
duced ethanol amounts on enveloped viruses. Both were con-
ducted in vitro, and show positive outcomes in relation to virus
denaturation.

• In 2007, Roberts and Lloyd found that 20% ethanol completely

inactivated three enveloped viruses: Sindbis, herpes simplex-1,

and vaccinia, in vitro, while having no effect on the nonenvel-

oped poliovirus-1.46 Inactivation was measured by inhibition of

plaque-forming units in a viral infectivity assay, but direct im-

pact on viral envelope was not determined. This study used a

rather basic system, in the absence of a soil load, which is nowa-

days recommended under the American Society for Testing and

Materials (ASTM) Committee E35 on Pesticides, Antimicrobials

and Alternative Control Agents (https://www.astm.org/

Standards/E2197.htm), or in the United Kingdom, the equivalent

British Standard (BS) Norme Européenne (EN) standard (BS EN

14476:2013þA2:2019 Chemical disinfectants and antiseptics.

Quantitative suspension test for the evaluation of virucidal activ-

ity in the medical area. Test method and requirements (Phase 2/

Step 1), https://shop.bsigroup.com/ProductDetail?pid¼000000000

030401479). Also, it was conducted at 22�C, rather than the more

relevant 36.8�C oral temperature, where the impact of denatur-

ation agents would be greater.
• In 2017, Siddharta et al. tested WHO recommended formulations

against enveloped viruses, including coronavirus. Focusing on

WHO formulation I, which contains 85% (v/v) ethanol, 0.725% (v/

v) glycerol, and 0.125% (v/v) hydrogen peroxide, they measured

in vitro infectivity in the presence of a soil load (0.5% w/v bovine

serum albumin). A 30-s exposure of a dilution containing 34% (v/

v) ethanol (40% of neat) completely prevented subsequent viral

replication.47

These studies indicate that relatively dilute ethanol will be
highly effective against enveloped viruses. However, there is an
urgent need to determine how coronaviruses are impacted by
dilute alcohol under biologically relevant conditions (mucosa,
mouth, etc.), and whether in combination with nontoxic, mem-
brane disrupting agents, oral inactivation of SARS-CoV-2 could
be achieved. A minimum amount of ethanol, for example, 10%–
30% (v/v) would be effective, and contact time will also be an im-
portant parameter that may reduce ethanol exposure required.
Ethanol impacts membrane properties of artificial lipid mem-
branes, causing leakage of contents even in the absence of com-
plete lysis. The ability of the virus to infect host cells could also
be modified by inducing biophysical changes to the virus mem-
brane which impact on protein function. The spike glycoprotein
which is required for SARS-CoV-2 infectivity contains a trans-
membrane domain that is inserted into the viral envelope,1 and
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it is well known that lipid membrane biophysical perturbations
can impact on conformation and function of many transmem-
brane proteins in mammalian cells. In this regard, the lipid
membrane of HIV-1 was recently demonstrated to stabilize viral
membrane glycoproteins and regulates their sensitivity to neu-
tralization by antibodies.62 Thus, lower concentrations of etha-
nol could alter pathogenicity without complete neutralization
of viral particles. Research is required to determine the impact
of ethanol or other agents on the infective activity of the SARS-
CoV-2 spike protein in vivo.

Membrane Perturbation Without Lysis can
Dampen Enveloped Virus Infectivity

The concept that perturbing the membrane could inactivate vi-
ruses has recently been tested in relation to membrane-

disrupting agents, and an in vitro screen of 1000 compounds
identified a series of lipidomimetics that can alter the mem-
brane and dampen infectivity of HIV-1.2 Active agents included
lipids related to cholesterol, sphingosine, or aliphatic lipids with
long-chain fatty acids which blocked at the stage of entry into
the host cell. The impact appeared to result from the lipids be-
ing incorporated into the membrane and inducing changes in
lipid order and buoyant density of the particles. In support of
this, a study in the 1970s showed that fatty acids and monogly-
cerides of 16–18 carbon chain length are highly effective in vitro,
reducing survival of herpes simplex virus to around 50% at con-
centrations down to 0.2 lM.63 These studies use compounds
that are nontoxic to mammalian cells and show great promise,
thus research is needed to determine whether they are also ac-
tive against the envelope of SARS-CoV-2 both in vitro and
in vivo.

Table 1. In vitro and in vivo data supporting the effects of ethanol on biomembranes or enveloped viruses

Reference Study type Ethanol Results

Ly and Longo39 Model membrane vesicles (membrane fluidity, per-
meability, interdigitation, thickness, etc.)

Ethanol >3.4 M (20%
v:v)

Membranes not considered “stable”;
interdigitation; rapid swelling of PC
vesicles

Ahl et al.40 Formation of interdigitated PL sheets from SUV Ethanol above 2 M
(11.8% v:v)

Formed larger IFVs; leakage of con-
tents of vesicles

Hunt et al.41 Repeated cycling through transition phase of model
membranes

Ethanol 86 mM (0.5%
v:v)

Lysis of PC vesicles

Komatsu et al.42–44 Leakage of dye from vesicles made of PC, PE/PC, or
PC/cholesterol.

0.6–2.1 M (3.5%–
12.3%, v/v)

Calcein leaks out at low ethanol con-
centrations. Rapid swelling of
vesicles.

Dennison et al.45 In vitro—Herpes, influenza, rotavirus, and
adenovirus

26.9% ethanol (v:v)
with essential oils

Enveloped viruses (herpes and influ-
enza) were significantly impacted

IADR abstract 2010 H1N1 Influenza A pandemic strain, in vitro 21.6% ethanol, 30-s
rinse

>99.99% reduction in infectivity

Roberts and Lloyd46 Three enveloped viruses: Sindbis, herpes simplex-1
and vaccinia, in vitro

20% (v:v) ethanol Completely inactivated

Siddharta et al.47 Enveloped viruses; in vitro infectivity WHO formula-
tion I in the presence of coronavirus.

30-s exposure of a
dilution contain-
ing 34% (v:v)
ethanol

Completely prevented subsequent vi-
ral replication

Oh et al.48 Mammalian cell membranes: Corneal epithelial cells 20% ethanol; 30-s
incubation

40% loss of viability; high level of leak-
age of intracellular contents

Sonmez et al.49 Mammalian cell membranes: Red blood cells 1M (5.9% v:v) ethanol Approximately 10% cell lysis
Chi and Wu50 and

Tyulina et al.51,52

Mammalian cell membranes: Red blood cells Moderate concentra-
tions around 3–4M
(18%–23.5%).

Potassium leakage and hemolysis

Wang et al.53 Mammalian cell membranes: Intestinal cell line
(Caco-2)

Ethanol >5%–10%:
long incubation
time of 60 min

Loss of viability, leakage of contents,
and disruption of tight junctions

Meiller et al.54 In vivo human study 21.6% ethanol, 30-s
rinse

Recoverable virions of herpes simplex
types I and II to 0 post rinse; at 30
min all lower than prerinse, 11/20
remained 0

Meiller et al.54 In vivo human repeat study 21.6% ethanol, 30-s
rinse

0 recoverable virions in 18/20 post
rinse and 12/20 at 30 min; at 60 min
all less than baseline

Sattar et al.
(unpublished data)

Finger pads of adults; Dried inocula; human respira-
tory coronavirus 229E

Hand gels with 60%
and 70% ethanol
exposed for 20 s

Viability titer of the virus was reduced
by >99.99% in both cases

Studies cited in our text are summarized above for type, ethanol amount, and outcome. They are listed in order of model membranes, followed by in vitro studies on vi-

ruses, studies on mammalian cell membranes, then in vivo studies. Ethanol concentrations were listed also, in some cases, whether v/v or w/v was used was not pro-

vided in the study. In all studies, refer to the primary literature for full information on the impact of ethanol on the membrane. PC, Phosphatidylcholine, PE,

phosphatidylethanolamine.
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Mouthwash Preparations that Show Activity
Against Enveloped Viruses in Published
Studies

We investigated the potential for commercially available
mouthwashes to disrupt viral lipid envelopes, either due to eth-
anol (Table 1), or other active agents, through reviewing avail-
able literature.

Three industry-sponsored studies from the Universities of
Maryland, Texas–Houston Health Sciences Centre, and State
University New York tested this using a widely available formu-
lation that combines 21%–26% ethanol with essential oils (euca-
lyptol 0.092%, menthol 0.042%, methyl salicylate 0.060%, and
thymol 0.064% w/v). Notably, there is published evidence that
eucalyptus oil and thymol have significant antiviral properties
toward herpes simplex virus at these concentrations, hypothe-
sized to relate to disruption of the viral lipid envelope.64

• The virucidal actions of 21% (v/v) ethanol with essential oils toward

an enveloped virus were reported in humans in vivo in 2005. A 30-s

rinse reduced infectious virions of herpes simplex types I and II to

effectively zero.54 Specifically, 18/20 people demonstrated no viri-

ons postrinse, and after a 30-min rinse, virions remained at zero

for 11/20 subjects, with all subjects remaining lower than prerinse

levels. In contrast, rinsing with distilled water reduced mean viri-

ons considerably less post 30-s rinse, and levels had largely

returned to baseline by 30 min. This indicates that the mouthwash

had a specific and significant impact on virion recovery. In a repeat

trial, 18/20 subjects had zero virions post 30-s rinse, with 12/20

remaining at zero at 30 min. At 60 min, all 20 were still shedding

virions at 1–2 log10 lower than baseline, demonstrating a modest

impact on viral titer. Longer contact times (eg, 60-s rinses) were not

tested.54 Herpesviruses differ from coronaviruses in that the former

can erupt periodically from where they reside in the nerves; so, us-

ing mouthwash may temporarily reduce the level and it may then

help promote resolution of the lesion. On the contrary, coronavi-

ruses will be shed almost constantly when actively replicating.
• A study in 1995 tested 26.9% ethanol with essential oils against

herpes, influenza, rotavirus, and adenovirus in vitro. Here, an

impact on the viral lipid envelope was speculated since herpes

and influenza were significantly impacted, while adenovirus and

rotavirus (nonenveloped) were not.45

• A follow-up unpublished study in 2010 determined that a 30-s

in vitro exposure to 21.6% ethanol with essential oils led to

>99.99% reduction of infectivity of H1N1 Influenza A pandemic

strain (https://iadr.abstractarchives.com/abstract/2010dc-131191/

evaluation-of-h1n1-antiviral-properties-of-an-essential-oil-contain

ing-mouthrinse).

These studies provide proof-of-concept that mouthwashes
containing essential oils with 21%–27% ethanol can inactivate
enveloped viruses, both in the lab and in humans, with the
likely mechanism being damage to the lipid envelope. Here, eth-
anol in combination with essential oils may provide a more ef-
fective formulation. Thus, these types of mouthwash may be
effective against SARS-CoV-2, although studies have not been
conducted. While other commercially available ethanol mouth-
washes generally contain lower levels without essential oils, an
impact on membrane biology may remain theoretically possi-
ble, and studies are required.

Chlorhexidine

Chlorhexidine is widely used for oral health in the United
Kingdom, being especially effective against Gram-positive

bacteria, but to a lesser extent Gram-negative bacteria and
fungi.65 Due to its positive charge, it reacts with the negatively
charged microbial surface, penetrating into the cell and causing
leakage. A report on its in vitro viricidal effectiveness at 0.12%
has indicated it can reduce the viral concentration of enveloped
but not nonenveloped viruses.66 However, this limited in vitro
study only considered the immediate postexposure, and no fur-
ther time points were included in the experimental design.
Chlorhexidine is often formulated with ethanol at lower con-
centrations, which may in part explain its virucidal impact. A
recent review of coronavirus literature identified that chlorhexi-
dine exposure for 10 min only weakly inactivated coronavirus
strains in suspension tests although the concentration used
was low at 0.02%.19,24 Chlorhexidine formulations have been
shown to retain oral antimicrobial activity for up to 12 h.67 It is a
more effective antimicrobial in vivo because it binds to clean
oral surfaces and is released over time (substantivity).67 Despite
lower activity toward coronaviruses, a combination of chlorhex-
idine with alcohol may offer a useful strategy for reducing viral
load over longer times.

Chlorhexidine mouthwashes have been a critical clinical
tool for over 40 years to reduce oral bacterial flora and prevent
infection and mucositis in cancer patients receiving chemother-
apy and radiotherapy.68–70 However, there are no reported stud-
ies assessing the impact of mouthwashes in specifically
preventing or treating viral infections in neutropenic patients.
Last, a recent meta-analysis showed that chlorhexidine (rinse
or gel) can reduce risk of ventilator-associated pneumonia in
patients undergoing mechanical ventilation, although causative
organisms were not described.71

Povidone-Iodine

Povidone-iodine (PVP-I) mouthwash has been widely studied in
relation to broad-spectrum antimicrobial and virucidal actions.
At 0.23%, which is routinely used in Japan, this rapidly inacti-
vates SARS-CoV, MERS-CoV, influenza virus A (H1N1), and rota-
virus in vitro.72 A second study also showed that PVP-I (0.23%) is
equivalent to 70% ethanol in inactivating SARS-CoV in vitro.73

Indeed, based on in vitro and limited clinical studies, in Japan,
the Ministry of Health, Labour and Welfare supported daily gar-
gling as a protective measure to prevent upper respiratory tract
infections.74 A small number of human studies supporting this
in the case of PVP-I have shown reduced incidence of both bac-
terial and viral (influenza) infection through repeated gar-
gling.72,75 In one rather limited study, the absence rate in
middle schools in Yamagata City was compared over 3 months,
where PVP-I gargling was encouraged in 1 school, versus 7
where it was not. A reduction of absence due to colds and influ-
enza from a mean of 25.5% (no gargling) down to 19.8% (P <

0.05) was found.76 In another study, a group of 23 patients gar-
gled more than 4 times/day for up to 2 h. Here, acute exacerba-
tion of chronic respiratory infection was reduced by around
50%.75 This mouthwash is not available in the United Kingdom,
although may still be purchased in Germany and other coun-
tries. As a 1% solution, PVP-I is available in Hong Kong, Korea,
Singapore, Malaysia, Philippines, and Taiwan. The importance
of higher concentrations of PVP-I as a broad-spectrum antimi-
crobial agent for topical uses is indicated by its inclusion on the
World Health Organization’s List of Essential Medicines (https://
www.who.int/medicines/publications/essentialmedicines/en/).
It should be noted that rare allergic reactions have been
reported for PVP-I.77
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Chlorinated Water or Hypertonic Saline Rinsing

Studies from Japan surprisingly found that gargling with chlori-
nated tap water reduced respiratory infections, and in one, was
even better than PVP-I. In one, three groups of around 130 age-
and gender-matched human subjects were studied (three 15-s
gargles with 20 mL, at least 3/day for 60 days).78 Tap water re-
duced incidence of common cold by 36%, while PVP-I was not
effective. It was speculated that chlorine in the water may have
contributed, since levels in Japan were above concentrations
that are known to have viricidal activity including toward envel-
oped species.79 However, information on the virucidal impact of
chlorine comes from in vitro studies, including 1 with a 30 min
contact time, and its impact in vivo on enveloped viruses,
through gargling tap water is not known.79 In 2008, another trial
calculated economics of the activity in two groups of around
120 subjects gargling water for 60 days and concluded that this
was a cost-effective strategy for upper respiratory infection pre-
vention.80 Last, a recent study showed that gargling and nasal
rinsing with hypertonic saline could reduce symptoms, dura-
tion of illness, and viral shedding. However, this was a pilot,
nonblinded, self-reported study and so cannot be considered
definitive.81 A follow-up study in vitro with enveloped and non/
enveloped viruses including human coronavirus 229E suggested
that this may have been related to altered intracellular chloride
levels and peroxidase activities.82 None of the in vivo studies
addressed the issue of which pathogens were contributing to ill-
ness, and so cannot be extrapolated to coronaviruses.

Separate to oral rinsing it is worth noting that nasal rinsing
with saline is a popular method promoted to clear nasal pas-
sages for sufferers of colds and allergies. Given that virus is re-
covered in the nasopharynx, a similar consideration of how this
might be used as preventative measure could be made. As for
mouthwash, clinical studies have not systematically examined
how effective nasal rinsing is for preventing respiratory infec-
tions. Notably, rare reports of serious illness when not properly
cleaned, due to the presence of parasitic amoebae in unboiled
tap water, has led to recommendations on careful disinfection
of rinsing syringes being made by CDC (https://www.cdc.gov/par
asites/naegleria/sinus-rinsing.html).

Hydrogen Peroxide

Hydrogen peroxide causes oxygen-free radical-induced disrup-
tion of lipid membranes and is widely used as an agent for tooth
whitening. Studies, including a recent systematic review, report
that coronavirus 229E and other enveloped viruses are inacti-
vated at concentrations around 0.5%.19,83 While higher concen-
trations of hydrogen peroxide (>5%) will induce damage to both
soft and hard tissues, within the range of concentrations used
in mouthwashes for whitening at 1%–3% little damage is
reported.84 Within the oral environment, hydrogen peroxide is
rapidly inactivated due to the presence of host- and bacteria-
derived catalase activity in saliva and other endogenous peroxi-
dases.85 The impact of peroxidases could theoretically be
reduced by using a prerinse with water, although this is untested.
A consideration with this agent is that it can have potential provi-
ral activities, although so far this was only seen in vitro.86–88

Quaternary ammonium compounds

These are widely used as microbicidal agents that interfere with
protein or lipid components on the cell surface, particularly
Gram-positive or Gram-negative bacteria. Their virucidal activi-
ties are not widely reported although some reports against

enveloped viruses have been made in the literature relating to
surface disinfection.79 Among this group of compounds, cetyl-
pyridinium chloride (CPC) was recently shown to have activity
against influenza both in vitro and in vivo, through direct attack
on the viral envelope, with in vitro EC50 being 5–20 lg/mL.89

CPC is used in medicated oral rinses at concentrations 0.025%–
0.075% w/v (250–750 mg/mL) in the United Kingdom, while loz-
enges sold in some countries contain 1.4–3.0 mg of CPC.

Current Policies Relating to Oral Health and
Use of Microbicides in Dental Practice and with
Immunosuppressed Individuals

Dental practitioners are at elevated risk of exposure to SARS-
CoV-2, and there are guidelines that advocate use of mouth-
wash clinically. Previously published CDC guidelines for
infection control in the dental setting have cited the potential
usefulness of preprocedural mouthwashes in reducing the
spread of airborne pathogens of all types.90 Indeed, studies have
addressed how virucidal components including CPC and chlor-
hexidine can be effective in reducing bacterial contamination in
this setting, although virus inactivation was not tested.91,92

Meng et al. in an experience-based review of their practice in
Wuhan, recommended preprocedural mouthwash to reduce the
oral microbial load in patients undergoing dental treatment in
patients with SARS-CoV-2.93 Last, two recent papers aimed at
providing guidelines for endodontists in relation to SARS-CoV-2
advocated preprocedural mouth rinse with 0.2% PVP-I.94,95

Given that the dental community recognize, the potential for
oral mouth washing in relation to reducing infection risk, ex-
trapolating these guidelines to the wider community is worth a
full discussion.

The Urgent Need for Research

Many questions need to be addressed in relation to whether
oral hygiene could represent a viable approach to dampen
transmission of SARS-CoV-2, and research is required to ad-
dress this.

In relation to oral hygiene, we need to determine:

• Can we reduce viral load in the oropharynx through oral rinsing?
• If we can reduce load, then which oral rinse would be clinically

effective: The current choice includes 20%–30% ethanol, lipid-

based membrane disruptors, PVP-1, CPC, hydrogen peroxide,

simple chlorinated tap water or WHO formulation I diluted to

30% of neat?
• Would a combination of agents in lower amounts be better toler-

ated, reducing adverse effects, and remain effective?
• What combinations or agents, contact time and frequency of use

would induce antiviral activity and reduce infectivity of SARS-

CoV-2?

Available research approaches include:

Statistical epidemiological studies could establish on a population
level whether mouth rinsing is associated with reduced rates
of throat and respiratory infections including SARS-CoV-2.
Purchasing data of health-related products to model health
linkages could be used. New applications to conduct wide-
spread monitoring of SARS-CoV-2 symptoms, could capture
use of mouthwashes to test for correlation with symptoms
and severity, alongside wider purchasing sales behavior of
those who are asymptomatic. Modeling approaches should
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also consider population usage of mouthwash preparations
and viral spread.

Underpinning research. Not all enveloped viruses are the same,
and herpes, influenza, and measles viruses are considered
more unstable than human coronaviruses, which may persist
for up to 5 days on inanimate surfaces.19,36,96 Thus, research
needs to focus on coronaviruses in particular. The exact com-
position of the SARS-CoV-2 lipidome needs to be determined
using lipidomics mass spectrometry. Research should deter-
mine the impact of ethanol or other agents on the infective ac-
tivity of the spike protein itself, in vitro, and in vivo. A useful
virus to test in vitro would be the human respiratory coronavi-
rus 229E which is used extensively as a surrogate for human
coronaviruses but only requires Category (Cat2) procedures,
and its replication and propagation conditions are well estab-
lished already. This would be a good representative for patho-
genic coronaviruses, prior to narrowing down to SARS-CoV-2
which requires Cat3 biosecurity.

The impact of temperature and soil load needs to be considered
for in vitro studies, applying the ASTM or EU standard proto-
cols (https://www.astm.org/Standards/E2197.htm). Here, the im-
pact of not only dose/composition but also the critical issue of
contact time with agents, which is a known modifiable parame-
ter of virucidal activity can be easily tested. The virucidal mech-
anisms can be determined, conducting lipidomics analysis of
the envelope along with assays that determine spike protein
conformation and activity. While a particular ethanol concen-
tration may achieve full inactivation, lower amounts could ei-
ther help to remove virus or lead to membrane damage
(permeability/leakage) that may impact throat cell virus infec-
tivity, for example, through potential modification of the ability
of the spike glycoprotein to interact with receptors on host cells.
In this regard, for HIV-1, the lipid membrane stabilizes mem-
brane glycoproteins, regulating their sensitivity to antibody
neutralization.62 This type of action could be further enhanced
if membrane disrupting agents were also included in a mouth-
wash. Indeed, lipidomimetic compounds have already been de-
veloped that can dampen viral infection through affecting lipid
membrane structure or curvature (discussed in Section
“Membrane Perturbation Without Lysis can Dampen Enveloped
Virus Infectivity”).

Most virucidal research uses in vitro models, where the response
to the agent will be different, and also does not take into ac-
count the impact of host immunity. There is an absence of ani-
mal model studies on coronavirus respiratory illness, although
macaques and mice transgenic for humanized ACE2 are begin-
ning to be studied with early indications being that both de-
velop mild illnesses in response to SARS-CoV-2 virus (https://
www.nature.com/articles/d41586-020-00698-x).

Clinical studies. Robustly designed, appropriately powered in vivo
clinical studies are needed, including determination of the
most effective composition. Self-reported, nonrandomized,
unblinded studies are not reliable and need to be avoided. An
important sequela of these over the counter medicines is that
individuals may use them prior to providing diagnostic naso-
pharyngeal/throat swabs. This could increase the number of
false-negative tests and facilitate transmission. Currently,
there is no specific advice to avoid these preparations prior to
testing.

Population-based interventions could be considered, although
panic buying or dangerous consumption of ethanol or metha-
nol has to be avoided. As high-risk groups come out of
self-isolation, they could represent a population to evaluate
clinical outcomes resulting from real-world use of available

mouthwashes. The current social restrictions will reduce a
number of transmission risk factor variables and alter clinical
outcomes in terms of SARS-CoV-2 infection, other respiratory
infections, and adverse effects, but monitoring outcomes
could provide useful data. Users could be given general advice
on product use, recording timings, and duration of gargling for
later analysis, or act as controls. Similarly, health workers at
high risk of infection could be provided products and asked to
record their use and report outcomes. Ideally, throat swabs
and blood samples would be obtained for testing. There would
be logistical, ethical, and regulatory issues involved in setting
up investigations. However, given the theoretical plausibility
and data we have reviewed plus the readily available products
and urgent need to reduce SARS-CoV-2 infection, measures
could be considered and action taken to instigate clinical in-
vestigation in the population during the outbreak.

Host inflammation. Mouthwashes widely utilized in daily oral and
dental hygiene for cosmetic and medical reasons and have
demonstrated acceptable tolerability when used multiple
times daily for durations of 6 months and longer. Despite this,
the impact of rinsing with these agents on throat tissue health
needs to be seriously considered, since the viral lipid mem-
brane is effectively the same as that of the host. Some of these
agents, such as ethanol and hydrogen peroxide may, if used
several times a day over a period of 2–3 months, induce muco-
sal inflammation. This was observed in a study on corneal epi-
thelial cells, where inflammatory cytokines (IL-1b, IL-6),
chemokines (IL-8/CXCL8, CCL2), and matrix metalloproteases
(MMP9) were all upregulated at the mRNA levels 1–3 days after
a 30-s exposure to 20% (v/v) ethanol.48 Here, it will be impor-
tant to ascertain whether a repeated daily rinse with mouth-
wash would have any detrimental impact on the stromal
tissue lining. Alternatively, host innate immune responses in
early infection could also represent a strategy to remove virus,
and this has not been considered in any studies to date.
Significant advances have been made into the molecular basis
of alcohol-induced tissue injury. However, these studies tend
to be confined to studies of acute and chronic alcohol con-
sumption where the metabolism of alcohol into acetaldehyde
and reactive oxygen intermediates modify various physiologi-
cal processes linked with the maintenance of tissue homeo-
stasis.97 Currently, there is a lack of research into the potential
impact of mouthwash on local inflammation within the throat
and consideration needs be given to both its impact on antivi-
ral immunity and the disruption of tissue integrity.

Additional Reading

We highlight a list of excellent review articles that were con-
sulted as part of preparing this review and were a source of pri-
mary research cited herein:
Budding of viral lipid membranes: Simons and Garoff98

Impact of virus on lipid metabolism: Sanchez and Lagunoff99

Review of inactivation of coronaviruses on surfaces: Wolff et al.100

Emergence of SARS-CoV in 2003: Peiris et al.101

Two papers on the impact of ethanol on interdigitation of mem-
branes: Slatter and Huang102,103

Control of infection using Povidone-Iodine: Eggers104

Summary of the composition of lipid membranes in cells: van
Meer105

Search strategy

Since the review covers many areas from basic biochemistry,
virology, and microbicidal research, as well as clinical
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information both in medicine and dentistry, multiple sources
were consulted. Most references were identified from PubMed,
ResearchGate, or Google, using search terms including “virus,”
“coronavirus,” “lipid envelope,” “alcohol,” “membrane,”
“chlorhexidine,” and others, alone and in combination. Many
references that were first identified, were then investigated fur-
ther to find additional source material and the original primary
research which was then included. The idea for drafting the re-
view was initiated by V.B.O. on March 21, 2020, through reach-
ing out in person to various international experts, to get their
views and input directly, via phone calls and then follow-up
emails. Boots UK was approached initially to discuss the ideas
and for information on formulation of available mouthwashes.
Boots researchers and scientists contacted Johnson & Johnson,
who provided proprietary information. Boots researchers
(Kirkdale, Thornley, Povey, Inchley, and O’Shea) then conducted
further searches of PubMed, Google, and ResearchGate, using
the same terms. Academic and clinical expertise was consulted
for virology (Stanton, Humphreys, and Bosch), clinical/ICU
(Fegan and Wise), dental practice (Thomas), immunology
(Jones), lipid biochemistry (Wakelem, Murphy, Simons, and
O’Donnell), and microbicides (Sattar and Maillard). Phone/email
correspondence with experts generated input, opinions, and
identified additional references. No timeline for references was
used and no languages were excluded.
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